Series 2500 "OPTYMA-F"

General

The solenoid valves base mounted line including electrical connection into the manifold.
Many technical features make the new product interesting:

- Flow rate of $1000 \mathrm{NI} / \mathrm{min}$
- Low consumption coils placed all in one side of the valve
- Quick mounting of the valve to the base using just one screw
- Quick connection of the bases thanks to 180 degree rotating pins
- Possibility to use different pressures along the manifold (including vacuum)
- IP65 environmental protection
- Electrical connection directly integrated into the base, 32 electrical signals available (can be used to build up a manifold of 32
monostable valves, 16 bistable valves or any combination within that limit).
- The electrical connection is made via 37 pin D-SUB connector.
- It is also available a 25 -pole connector that is able to manage a maximum number of 22 electrical signals.

Possibility to integrate with Field Bus modules CANopen ${ }^{\oplus}$, PROFIBUS DP, DeviceNet, EtherNet/IP, PROFINET IO RT/IRT, EtherCAT ${ }^{\circledR}$, Powerlink and Modbus/TCP.
Possibility to connect input modules, even on the base that does not have the Field Bus module. Large use of technopolymer material reduces the overall weight of the manifold.
"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001, Pneumatic fluid power-Directional control valves-Measurement of shifting time"

Main characteristics

Integrated and optimized electrical connection system.
IP65 protection degree.
Only one 19 mm size
Electrical line connections on one side
Monostable and bistable solenoid valves with the same size dimensions.
Easy and fast manifold assembly

Construction characteristics

Body	Technopolymer
Operators	Technopolymer
Spacers	NBR
Spacer	Technopolymer
Spools	Nickel - plated steel/Technopolymer
Springs	AISI 302 stainless steel
Pistons	Technopolymer
Piston seals	NBR

Functions

SV 5/2 MONOSTABLE SOLENOID-SPRING
SV $5 / 2$ MONOSTABLE SOLENOID-DIFFERENTIAL
SV 5/2 BISTABLE SOLENOID-SOLENOID
SV 5/3 C.C. SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.C.-N.C. (=5/3 O.C.) SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.O.-N.O. (=5/3 P.C.) SOLENOID-SOLENOID
SV $2 \times 3 / 2$ N.C.-N.O. SOLENOID-SOLENOID

Technical characteristics

Voltage	$24 \mathrm{VDC} \pm 10 \%$ PNP (NPN and AC on request)
Pilot consumption	1,3 Watt
Pilot working pressure (12-14)	From 3 to 7 bar max.
Valve working pressure [1]	from vacuum up to 10 bar
Operating temperature	$-5^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$
Protection degree	IP 65
Life (standard operating conditions)	50000000
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous

Solenoid-Spring

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$3 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	1000
Responce time according to SO 12238, activation time (ms)	14
Responce time according to ISO 12238, deactivation time (ms)	40

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Solenoid-Differential

Solenoid-Solenoid

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Pressure range (bar)	$3 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	1000
Responce time according to SO 12238, activation time (ms)	10
Responce time according to ISO 12238, deactivation time (ms)	14

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

\vee	VOLTAGE
	$\mathbf{0 2}=24$ VDC PNP
	$\mathbf{1 2}=24$ VDC NPN
	$\mathbf{0 5}=24 \mathrm{VAC}$

Coding: 2531.52.00.35.V

Solenoid-Solenoid 5/3
Coding: 2531.53.31.35.V

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pressure range (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$3 \div 7$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	$-5 \div+50$
Responce time according to SO 12238 , activation time (ms)	600
Responce time according to ISO 12238, deactivation time (ms)	15

Voltage
(v) $02=24 \mathrm{VDCPNP}$
$12=24$ VDC NPN
$05=24 \mathrm{VAC}$
SHORT FUNCTION CODE"E"
Weight 126 g

Solenoid-Solenoid 2x3/2

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	
Pressure range (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$\geq 2,5+(0,2 \times P$. alim. $)$
Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$	$-5 \div+50$
Responce time according to ISO 12238 , activation time (ms)	700
Responce time according to ISO 12238 , deactivation time (ms)	15

Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001

Coding: 2531.62.E.35.V

F	FUNCTION
	44 = NC-NC (5/3 Open centres)
	$\begin{aligned} & \mathbf{5 5}=\text { NO-NO (5/3 Pressured } \\ & \text { centres) } \end{aligned}$
	$45=$ N.C.-N.O. (normally closed-normally open)
	54 = N.O.-N.C. (normally open-normally closed)
(V)	VOLTAGE
	$02=24 \mathrm{VDC} \mathrm{PNP}$
	$12=24 \mathrm{VDCNPN}$
	$05=24 \mathrm{VAC}$

SHORT FUNCTIONCODE:
NC-NC (5/3 Open centres)="F"
NO-NO (5/3 Pressured centres)="G"
NO-NO=" $\mathrm{NC}=1 "$
Weight $115,5 \mathrm{~g}$

Left Endplates

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10 (External pilot base only)
Pressure range (bar)	$3 \div 7$
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

Weight 206 g

Coding: 2530.V.C

(V)	VERSION	
	02 = External feeding	
	12 = Self-feeding	
C	ELECTRICAL CONNECTION	
	$\begin{aligned} & 37 \mathrm{P}= \\ & \mathrm{PNP} \end{aligned}$	Connectors 37 poles
	$\begin{aligned} & \text { 25P = } \\ & \text { PNP } \end{aligned}$	Connectors 25 poles
	$\begin{aligned} & 37 \mathrm{~N}= \\ & \text { NPN } \end{aligned}$	Connectors 37 poles
	$\begin{aligned} & \text { 25N = } \\ & \text { NPN } \end{aligned}$	Connectors 25 poles
	$\begin{aligned} & 37 \mathrm{~A}= \\ & \mathrm{AC} \end{aligned}$	Connectors 37 poles
	$\begin{aligned} & 25 A= \\ & A C \end{aligned}$	Connectors 25 poles
	$\begin{aligned} & \text { C16 }= \\ & \text { PNP } \end{aligned}$	Terminal 16 signals

2530.02.©

Weight 206 g
2530.12.©

> Right Endplates		Coding: 2530.03.C		
Operational characteristics		C	ELECTRICAL CONNECTION 00 = Electrical connection	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous			
Working pressure (bar)	From vacuum to 10		25P =	Connectors 25 poles
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$	Weig	ht $181,5 \mathrm{~g}$	

PORT 82/84 = DO NOT PRESSURIZE, SOLENOID PILOTS EXHAUST

\square

Fluid
Working pressure (bar)
Temprature ${ }^{\circ} \mathrm{C}$

Filtered air. No lubrication needed, if applied it shall be continuous
Temperature ${ }^{\circ} \mathrm{C}$
-

Modular base

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

Coding: 2530.00
Short Function code "T"
Weight $53,5 \mathrm{~g}$
(v) $\mathbf{M}=$ for Monostable SV B = for Bistable SV
SHORTCODE "1" (per EV Monostabile) SHORT CODE "2" (per EV Bistabile) Weight $91,5 \mathrm{~g}$

Intermediate Inlet/Exhaust module

Operational characteristics	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous
Working pressure (bar)	From vacuum to 10
Temperature ${ }^{\circ} \mathrm{C}$	$-5 \div+50$

General :

Each Optyma-F manifold lets to manage 32 command signals for the valves. Optyma-F serial nodes (CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP, EtherCAT ${ }^{\circledR}$, PROFINET IO RT, EtherNet/IP and Powerlink) have a single pin for the power supply of the solenoid valves. So if you want to interrupt the power supply of one valve it is necessary to interrupt all the valves. The additional power supply module lets to interrupt at the same time the first 2/4/6/8 available command signals for the valves after the module itself. The additional power supply module
is particularly useful also when you use control signals that block the valves. This application is effective both with serial management and multi-pole connection of the manifolds.
This module has the same characteristics of an intermediate supply and exhaust module and fits directly into the Optyma-F series solenoid valve manifolds.

In particular this module is fitted with a M8 3 pins connector: +24 V , not connected, GND.

Ordering code

2530.10.2 $\mathrm{A}=2$ positions
2530.10.4A $=4$ positions
2530.10.6A $=6$ positions
$2530.10 .8 \mathrm{~A}=8$ positions

WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

This module uses an external power supply (+24VDC) to manage the solenoid valves.

The output signal from serial node / multi-pole connection is used as command signal: when it is high the +24 VDC will be present at the module output.

If you want to cut off the power supply to a group of 2 valves it is sufficient to take away the +24 VDC provided to the module by the M8 connector.

Please note: It is possible to use more modules to interrupt all the command signals,
simply by inserting them before the signals to interrupt and after the signals already interrupted.

Usage examples:

EXAMPLE 1:

Manifold of 12 monostable valves on which you want to interrupt signals 7-8

Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves. Please note: the first 2 monostable of these are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

EXAMPLE 2 :

Manifold of 12 monostable valves on which you want to interrupt signal 9

Assembly:

- 8 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 1 monostable valve (interruptible),
- 1 closing plate mounted on a monostable base,
- 3 monostable valves (work correctly managed directly by the corresponding command signals).

Please note: Each additional power supply module interrupts always 2 electrical signals.
If you need to interrupt less than 2 signals you can:

- assemble the valves to interrupt in the last positions of the manifold, so you don't need to worry about the interrupted exceeding signals; - use a bistable base and mount a monostable valve (for each signal less than the 2 standard);
- use a monostable base and mount a closing plate (for each signal less than the 2 standard).

EXAMPLE 3 :

Manifold of 7 monostable e 3 bistable valves on which you want to interrupt signals 2-3 and 8-9.

Assembly:

- 1 monostable valve (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves.

Please note: the first 2 monostable of these are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

- 1 additional power supply module,
- 3 bistable valves.

Please note: the first bistable of these valves is interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

General :

Each Optyma-F manifold allows you to manage 32 command signals for the solenoid valves. Optyma-F serial nodes (CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP, EtherCAT ${ }^{\circledR}$, PROFINET IO RT, EtherNet/IP) have a single pin for the power supply of the solenoid valves.
So if you want to interrupt the power supply of one valve it is necessary to interrupt all the valves. The additional power supply module allows you to interrupt at the same time the first $2,4,6 \circ 8$ available command signals for the valves after the module itself according to the selected device version. The additional power supply moduleis particularly useful also when you use control signals that block the valves. This application is effective both with serial management and multi-pole connection of the manifolds.
Furthermore, the electro-pneumatic cut off module allows you to interrupt the air flow that feeds the 12/14 pilots coming from upstream.
A threaded connection port incorporated in the module allows to pneumatically feed each pilots of a limited number of solenoid valves downstream.
This module has the same characteristics of an intermediate supply and exhaust module and fits directly into the Optyma-F series solenoid valve manifolds.

In particular this module is fitted with a M8 3 pins connector: +24 V , not connected, GND.

WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

This module uses an external power supply (+24 VDC) to manage the solenoid valves.

The output signal from serial node / multi-pole connection is used as command signal: when it is high the +24 VDC will be present at the module output.

If you want to cut off the power supply to a group of 4 valves it is sufficient to take away the +24 VDC provided to the module by the M8 connector.

Please note: It is possible to use more module to interrupt all the command signals,
simply by inserting them before the signals to interrupt and after the signals already interrupted.

Usage examples:

EXAMPLE 1:
Manifold of 12 monostable valves on which you want to interrupt signals 7-8-9-10
Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves. Please note: the first 4 monostable of these are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

EXAMPLE 2 :

Manifold of 12 monostable valves on which you want to interrupt signals 7-8-9

Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 3 monostable valves (interruptible),
- 1 closing plate mounted on a monostable base,
- 3 monostable valves (work correctly managed directly by the corresponding command signals).

Please note: Each additional power supply module interrupts always 4 electrical signals.
If you need to interrupt less than 4 signals you can:

- assemble the valves to interrupt in the last positions of the manifold, so you don't need to worry about the interrupted exceeding signals; - use a bistable base and mount a monostable valve (for each signal less than the 4 standard);
- use a monostable base and mount a closing plate (for each signal less than the 4 standard).

EXAMPLE 3 :

Manifold of 7 monostable e 3 bistable valves on which you want to interrupt signals 2-3-4-5 and 8-9-10-11.
Assembly:

- 1 monostable valve (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves.

Please note: the first 4 monostable of these are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

- 1 additional power supply module,
- 3 bistable valves.

Please note: the first 2 bistable of these valves are interruptible by the module, while the following will work correctly managed directly by the corresponding command signals.

Polyethylene Silencer Series SPL-P

Cable complete with connector, 37 Poles IP65

Coding: 2400.37.C.C

Coding: 2400.25.․․ 25

(1)	CABLELENGTH
	03 $=3$ meters
	$05=5$ meters
	$10=10$ meters

The electrical connection is achieved by a 37 pin connector and can manage up to 32 solenoid pilots.
It is also possible use a 25 sub-D pin connector and, in this case, it is possible to manage a maximum of 22 outputs. It is also available a terminal, able to manage a maximum of 16 outputs.
The management and distribution of the electrical signals between each valve is obtained thanks to an electrical connector which receives the signals from the previous module, uses one, two or none depending on the type, and carries forward to the next module the remaining.
Bistable valves, $5 / 3$ and $2 \times 3 / 2$ valves which have two solenoid pilots built in, use two signals; the first is directed to the pilot side 14 the second to the pilot side 12. Modular bases can be fitted with two type of electrical connector: the monostable version uses only one signal (connected to the pilot side 14) and carries forward the remaining, the bistable version which always uses two signals.
This solution allows the modification of the manifold (replacement of monostable valves without bistable for example) without having to reset the PLC output layout.
On other hand this solution limits the maximum number of valves to 16 when it is used a 37 pin connector or 11 when it is used a 25 pin connector. When using a Endplates with terminal, the maximum number of valves are 8.
Intermediate supply/exhaust module uses an electrical connector directly forwarding signals to the next one without any kind of modification.
This allows the use of intermediate modules in any position of the manifold.
All the electrical signals that have not been used on the manifold can be used placing at the end of the manifold the end plate complete with the 25 sub-D female connector.
The number of available signals depends of the connector used to the type of the left end plate and by the total signals used along the manifold:

37 pin connector	nr of output $=32-$ (total of used signals)
25 pin connector	nr of output $=22-$ (total of used signals)
Terminal	nr of output $=16-$ (total of used signals)

Following we show some examples of possible combination and the relative pin assignment.

37 PIN Connector correspondence for valves assembled on mixed bases

37 PIN Connector correspondence for manifold mounted on bases for bistable valves

PIN 1 = PILOT 14 SV POS. 1 PIN 2 = PILOT 12 SV POS. 1 PIN 3 = PILOT 14 SV POS. 2 PIN $4=$ NOT CONNECTED PIN $5=$ PILOT 14 SV POS. 3 PIN $6=$ NOT CONNECTED PIN $7=$ PILOT 14 SV POS. 4 PIN $8=$ PILOT 12 SV POS. 4 PIN 9 = PILOT 14 SV POS. 5 PIN $10=$ NOT CONNECTED PIN 11 = PILOT 14 SV POS. 7 PIN 12 = NOT CONNECTED PIN 13 = PILOT 14 SV POS 8 PIN 14 = NOT CONNECTED PIN 15 = PILOT 14 SV POS. 9 PIN 16 = NOT CONNECTED PIN 17 = PILOT 14 SV POS. 10 PIN $18=$ NOT CONNECTED PIN 19 = PILOT 14 SV POS. 11 PIN 20 = PILOT 12 SV POS. 11 PIN 21 = PILOT 14 SV POS. 12 PIN 22 = PILOT 12 SV POS. 12

37 PIN Connector correspondence for manifold for 32 position manifold with monostable valves on base

25 PIN Connector correspondence for manifold for 22 position manifold with monostable valves on base

General :

Using the 2530.03.25P output terminal it is possible to make any electrical signals not used by valves available on a 25 sub-D female connector at the right end of the manifold.
It is possible to then join a multi-core cable to link to the next manifold, or connect directly to one or two I/O modules.
The I/O modules can accept input or output signals, depending upon what is connected.

Please note: If the manifold is connected by a multi-core connection, each connection can be used as either an input or an output, while if the manifold is connected to a serial node the connections can only be used as an output.

It is possible to connect the manifold to up to two I/O modules.
Each I/O module includes 8 diagnostic LEDs which indicate the presence of an Input / Output signal for each connector.

Please note: For an LED to function, a signal of at least +15VDC must be present on pin 4
 of the connector. If this signal is lower, the LED will not light, this does not compromise the normal Input/ Output function of the unit.

Overall dimensions and I / O layout :

PIN	DESCRIPTION
1	+24 VDC
4	INPUT/OUTPUT
3	GND

Input features:

Each connection can accept either two wire (switches, magnetic switches, pressure switches, etc.) or three wire connections (photocells, electronic end of stroke sensors, etc.) If +24 VDC is required on at Pin 1 of each connector, it is possible to provide this via the through-line pin of the multi-pole connector.
I.E:

Pin 25 of the 25 pin multi-pole connector (code 2530.02.25P or 2530.12.25P)
Pin $36-37$ of the 37 pin multi-pole connector (code 2530.02.37P or 2530.12.37P)

Output features:

\triangle
Attention: The output connections are not protected against short-circuit. Please pay attention when wiring (avoid Pin 4 being connected to Pin 3 or Pin 1).

	Model	2530.08F
	Case	Reinforced technopolymer
	I/O Connector	M8 connector 3 poles female (IEC 60947-5-2)
	PIN1 voltage (connector used as Input)	By the user
	PIN 4 voltage diagnosis	Green LED
	Node consumption (Outlets excluded)	7 mA per each LED with 24 VDC signal
	Outlets voltage	+23,3 VDC (serial)/by the user (multipolar)
	Input voltage	Depend by the using
	Maximum outlet current	100 mA (serial) / 400 mA (multipolar)
	Maximum Input/Output	8 per module
	Multiconnector max. Current	100 mA
	Connections to manifold	Direct connection to 25 poles connector
	Maximum n. of moduls	2
	Protection degree	IP65 when assembled
	Ambient temperature	from -0° to $+50^{\circ} \mathrm{C}$

CORRESPONDENCE BETWEEN MULTI-POLE SIGNAL AND CONNECTOR

PIN DESCRIPTION
1 THROUGH
4 SIGNAL
3 GND

Connection modes:

The I/O module changes it is operation depending on the way the manifold is controlled. There are two possible modes:
A) Control via multi-pole connection
B) Control via fieldbus

A) Control via multi-pole :

M8 connector used as Input:

1
Attention: Voltage applied to each connector is passed to multi-pole connector pin.

In order to use the $1 / \mathrm{O}$ module, the correct right hand endplate with 25 pole female outlet connector must be used.
(Code 2530.03.25P).

M8 connector used as Output:

Output voltage will the same as is applied at the multi-pole connector pin.
The maximum output current depends upon the power unit used, but we recommend no more than 250 mA .

Attention: Since every cable has a degree of resistance, there will always be a voltage drop depending on the cable's length, sectional area and the current.

Attention : Optyma 32-F solenoid valve manifolds permit up to 22 electrical signals that are not used by manifolds to be made available: these signals can be managed by another manifold and / or by I/O modules.
The I/O module will manage these unused signals. Connections that are not managing useful signals will remain unconnected.

Please note: Optyma 32-F solenoid valve manifolds manage up to 32 signals. If the manifold uses more than 24 signals the I/O module will manage only the remainder. Connections that are not managing useful signals will remain unconnected.

B) Control via fieldbus:

With this kind of control the I/O module can only be used as an output. Pin 1 of each connector is not connected. The output voltage will be 0.7 V lower than that applied to Pin 4 of the connector.
The maximum output current for each output is 100 mA . Te correspondence between control byte and each single output depends on how many electrical signals are used by the manifold and by the relative position of the I/O module.

Please note: I/O modules don't allow to connect any additional valves manifold after them.

From the top

DIN rail fixing

Maximum possible size
according to valves seats

Manual override actuation

Bistable function: push and turn to get the bistable function

NOTE : It is strongly suggested to replace the original position after using

NOTE: Torque moment 1 Nm
Manifold assembly

Manifold Layout configuration

SHORT CODE FUNCTION / CONNECTION :

A1 $=5 / 2$ SOL.-SPRING + BASE TYPE 1 (1 electrical signal occupied) A2 $=5 / 2$ SOL.-SPRING + BASE TYPE 2 (2 electrical signals occupied) B1 $=5 / 2$ SOL.-DIFFERENTIAL + BASE TYPE 1 (1 electrical signal occupied) B2 $=5 / 2$ SOL.-DIFFERENTIAL + BASE TYPE 2 (2 electrical signals occupied) C2 $=5 / 2$ SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) E2 $=5 / 3$ CC SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) F2 $=2 \times 3 / 2$ NC-NC ($=5 / 3 \mathrm{OC}$) SOL.-SOL.+BASE TYPE 2 (2 electrical signals occupied) G2 $=2 \times 3 / 2$ NO-NO ($=5 / 3 \mathrm{PC}$) SOL.-SOL.+BASE TYPE 2 (2 electrical signals occupied) $\mathrm{H} 2=2 \times 3 / 2$ NC-NO SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) $12=2 \times 3 / 2$ NO-NC SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) T1 = FREE VALVE SPACE PLUG + BASE FOR MONOSTABLE VALVE
T2 = FREE VALVE SPACE PLUG + BASE FOR BISTABLE VALVE

NOTE:

While configuring the manifold always be careful that the maximum number of electrical signals available is:
32 when an input 37 poles endplate is used.
22 when an input 25 poles endplate is used.
The use of monostable valve mounted on a base type 2 (2 electrical signals occupied) causes the loss of one electric signal.
In this case the monostable valve can be replaced by a bistable valve. The diaphragms plugs are used to intercept the conduits $1,3 \& 5$ of the base. If it is necessary to interrupt more than one conduit in the same time then put in line the letters which identifies the position (for exemple : regarding the 3 \& 5 conduits, put the Y \& Z letters).
Should one or more conduits be cut more than one time it is necessary to add the relevant intermediate Supply/Exhaust module.

ACCESSORIES

U2 $=$ Electric and electro-pneumatic cut off module 2 positions K2 = Electric and electro-pneumatic cut off module 2 positions with external pilot
U4 = Electric and electro-pneumatic cut off module 4 positions K4 = Electric and electro-pneumatic cut off module 4 positions with external pilot
U6 = Electric and electro-pneumatic cut off module 6 positions K6 = Electric and electro-pneumatic cut off module 6 positions with external pilot
U8 = Electric and electro-pneumatic cut off module 8 positions K8 = Electric and electro-pneumatic cut off module 8 positions with external pilot
W = Intermediate supply \& exhaust module
$\mathrm{X}=$ Diaphragm plug on pipe 1
$\mathrm{Y}=$ Diaphragm plug on pipe 3
$Z=$ Diaphragm plug on pipe 5
XY = Diaphragm plug on pipe $1 \& 3$
ZX = Diaphragm plug on pipe 5 \& 1
ZY = Diaphragm plug on pipe 5 \& 3
ZXY = Diaphragm plug on pipe 5, 1 \& 3

Series $\mathbf{2 5 0 0}$ OPTYMA-F solenoid valve manifolds managed by multipoint connection are "well tried components"

V1	Well-tried component
B $_{\text {10d }}$	50.000 .000

The product is a well-tried product for a safety-related application according to ISO 13849-1.

- The relevant basic and well-tried safety principles according ISO 13849-2 for this product are fulfilled.
-The suitability of the product for a precise application must be verified and confirmed by the user.

General:

CANopen ${ }^{\circledR}$ module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.

Scheme / Overall dimensions and I/O layout :

General:

DeviceNet module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-F solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08 F or a max number of 2 Input modules 5225.25 F .
DeviceNet module recognizes automatically the presence of the Input modules on power on.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus DeviceNet is possible via 2 M12 5P male - female circular connectors; these two are connected in parallel and according to DeviceNet Specifications Volume I, release 2.0.
Transmission speed can be set by 3 dip-switches.
The node address can be set by 6 dip-switches using BCD numeration.
The module includes an internal terminating resistance that can be activated by a dip-switch.

Scheme / Overall dimensions and I/O layout :

NETWORK connectors

PIN	SIGNAL	DESCRIPTION	
1	2	CAN_SHLD	Optional CAN Shield
2	CAN_V+	Optional CAN external positive supply (Dedicated for supply of transceiver and Optocouplers, if galvanic isolation of the bus node applies)	
3	CAN_GND	Ground / OV / V-	
4	CAN_H	CAN_H bus line (dominant high)	

Model	$5425.32 F$
Specifications	DeviceNet Specifications Volume I, release 2.0.
Case	Reinforced technopolymer
Power supply connection	M12 4P male connector (IEC 60947-5-2)
Power supply voltage	+24 VDC $+/-10 \%$
Node consumption (without inputs)	30 mA
Power supply diagnosis	Green LED PWR
PNP equivalent outputs	+24 VDC $+/-10 \%$
Maximum current for output	100 mA
Maximum output number	32
Max output simultaneously actuated	32
Network connectors	2 M12 5P connectors male-female type A (IEC 60947-5-2)
Baud rate	$125-250-500$ Kbit/s
Addresses, possible numbers	From 1 to 63
Max nodes in net	64 (slave + master)
Bus maximum recommended length	100 m at 500 Kbit/s
Bus diagnosis	Green LED + Red LED
Configuration file	Available from our web site: http://www.pneumaxspa.com
IP protection grade	IP65 when assembled
Temperature range	From 0° to $+50^{\circ} \mathrm{C}$

General:

PROFIBUS DP module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.

Scheme / Overall dimensions and I/O layout :

General:

EtherCAT ${ }^{\circledR}$ module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-F solenoid valves connected to node must be PNP equivalent (final 02 in ordering code). The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08 F or a max number of 2 Input modules 5225.25 F .
The EtherCAT ${ }^{\circledR}$ module, regardless the number of Input module connected, reports to have connected 4 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus EtherCAT ${ }^{\circledR}$ is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.
Note: 5700 series has a different configuration file from series 5600 .

Scheme / Overall dimensions and I/O layout:

General:

PROFINET IO RT module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-F solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08 F or a max number of 4 Input modules 5225.25 F .
The PROFINET IO RT module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32. Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus PROFINET IO RT is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General:

EtherNet/IP module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-F solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08 F or a max number of 4 Input modules 5225.25 F .
The EtherNet/IP module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus EtherNet/IP is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General:

Powerlink module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-F solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08 F or a max number of 4 Input modules 5225.25 F
The Powerlink module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus Powerlink is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General:

Modbus/TCP module is directly integrated on Optyma-F solenoid valves manifold via a 37 poles connector, normally used for multipolar cable connection.
Optyma-F solenoid valves connected to node must be PNP equivalent (final 02 in ordering code).
The node can be easily installed also on solenoid valves manifold already mounted on equipment.
Module can manage up to 32 solenoid valves, and, in the same time, a max number of 4 Input modules 5225.08 F or a max number of 4 Input modules 5225.25 F .
The Modbus/TCP module, regardless the number of Input module connected, reports to have connected 8 Input modules.
Regardless of the number of Input modules connected, the managable solenoid valves are 32.
Node power supply is made by a M12 4P male circular connector.
The separation between node 24 VDC Power supply and outputs 24 VDC allows to switch off the outputs maintaning powered the node and inputs, if present.
Connection to Bus Modbus/TCP is possible via 2 M12 4P type D female circular connectors. These two connectors lead the signal to two different communication ports, so they are not connected in parallel.
The node address is assigned during configuration.

Scheme / Overall dimensions and I/O layout :

General:

Modules have 8 connectors M8 3P female.
The Inputs are PNP equivalent $24 \mathrm{VDC} \pm 10 \%$.
To each connector it is possible to plug both 2 wires Inputs (switches, magnetic switches pressure switches, etc.) or 3 wires Inputs (proximity, photocells, electronic sensors, etc).
The maximum current available for all 8 Inputs is 200 mA .
Each module includes a 200 mA self-mending fuse. If a short circuit or a overcharge (overall current $>200 \mathrm{~mA}$) occur the safety device acts cutting the 24 VDC power supply to all M8 connectors on the module and switching off the green LED PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault disappears the green LED PWR lights up indicating the ON state and the node will re-start to operate.
The maximum number of Input modules supported is 4 .

Scheme / Overall dimensions and I/O layout :

Module 1

Module 2 Module 1

General :

Modules are fitted with SUB-D 25 pin female connector.
The Inputs are PNP equivalent $24 \mathrm{VDC} \pm 10 \%$.
To the connector it is possible to connect both 2 wires Inputs (switches, magnetic switches pressure switches etc.) or 3 wires (proximity, photocells, electronic end of stroke sensors etc).
The maximum current available for all 16 Inputs is 750 mA .
Each module includes a 750 mA self-mending fuse. Should a short circuit or a overcharge (overall current $>750 \mathrm{~mA}$) occur the safety device intervenes cutting the 24VDC power supply to all pins and switching off the green LED PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault is removed the green LED lights up indicating the ON state and the node will re-start to operate. This16 Inputs module is counted as two 8 Inputs modules.

The Maximum number of 16 Inputs modules supported is 2 for CANopen ${ }^{\circledR}$, DeviceNet and EtherCAT ${ }^{\circledR}$.
The Maximum number of 16 Inputs modules supported is 4 for PROFIBUS DP, PROFINET IO RT, EtherNet/IP and Powerlink.

Scheme / Overall dimensions and I/O layout :

General :

This module is fitted with two M8 3 pin female connectors.
With this module is possible to read two analogue inputs (voltage or current).
The inputs are sampled at 12 bit.
For practicality the sampled value is transmitted with 16 bit, of which the four less significant are fixed at zero.

Available models:
5225.2T.00F (voltage signal 0-10V);
5225.2T.01F (voltage signal 0-5V);
5225.2C.00F (current signal 4-20mA);
5225.2C.01F (current signal 0-20mA).

Each module includes a 300 mA self-mending fuse. Should a short circuit or a overcharge (overall current $>300 \mathrm{~mA}$) occur the safety device intervenes cutting the 24VDC power supply to all M8 connectors on the module and switching off the green LED PWR. Any other Input module connected to the node will remain powered and will function correctly.
Once the cause of the fault is removed the green LED lights up indicating the ON state and the node will re-start to operate.

This module is counted as four 8 digital Inputs modules.
The Maximum number of 2 analogue Inputs modules supported is 1 for CANopen ${ }^{\circledR}$, DeviceNet, PROFIBUS DP and EtherCAT ${ }^{\circledR}$.
The Maximum number of 2 analogue Inputs modules supported is 2 for PROFINET IO RT, EtherNet/IP and Powerlink.
Scheme / Overall dimensions and I/O layout:

Manifold Layout configuration

ACCESSORIES

RIGHT ENDPLATE

$$
\begin{aligned}
& \mathrm{U} 0=\text { Closed } \\
& \text { U2 }=25 \text { Poles } \\
& \text { U3 }=37 \text { Poles }
\end{aligned}
$$

MODUL CONFIGURATION

ACCESSORIES CONFIGURATION

U2 = Electric and electro-pneumatic cut off module 2 positions K2 = Electric and electro-pneumatic cut off module 2 positions with external pilot
U4 = Electric and electro-pneumatic cut off module 4 positions K4 = Electric and electro-pneumatic cut off module 4 positions with external pilot
U6 = Electric and electro-pneumatic cut off module 6 positions K6 = Electric and electro-pneumatic cut off module 6 positions with external pilot
U8 = Electric and electro-pneumatic cut off module 8 positions K8 = Electric and electro-pneumatic cut off module 8 positions with external pilot
W = Intermediate supply \& exhaust module
$\mathrm{X}=$ Diaphragm plug on pipe 1
$Y=$ Diaphragm plug on pipe 3
$Z=$ Diaphragm plug on pipe 5
$\mathrm{XY}=$ Diaphragm plug on pipe $1 \& 3$
ZX = Diaphragm plug on pipe 5 \& 1
ZY = Diaphragm plug on pipe 5 \& 3
ZXY = Diaphragm plug on pipe 5, 1 \& 3

NOTE:

While configuring the manifold always be careful that the maximum number of electrical signals available is 32 .
The use of monostable valve mounted on a base type 2 (2 electrical signals occupied) causes the loss of one electric signal. In this case the monostable valve can be replaced by a bistable
valve. The diaphragms plugs are used to intercept the conduits 1,3 \& 5 of the base. If it is necessary to interrupt more than one conduit in the same time then put in line the letters which
identifies the position (for exemple : regarding the 3 \& 5 conduits, put the Y \& Z letters). Should one or more conduits be cut more than one time it is necessary to add the relevant intermediate Supply/Exhaust module.

SHORT CODE FUNCTION / CONNECTION :

A1 $=5 / 2$ SOL.-SPRING + BASE TYPE 1 (1 electrical signal occupied) A2 $=5 / 2$ SOL.-SPRING + BASE TYPE 2 (2 electrical signals occupied) B1 = 5/2 SOL.-DIFFERENTIAL + BASE TYPE 1 (1 electrical signal occupied) B2 $=5 / 2$ SOL.-DIFFERENTIAL + BASE TYPE 2 (2 electrical signals occupied) C2 $=5 / 2$ SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) E2 $=5 / 3$ CC SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) F2 = 2x3/2 NC-NC (=5/3 OC) SOL.-SOL.+BASE TYPE 2 (2 electrical signals occupied) G2 $=2 \times 3 / 2$ NO-NO ($=5 / 3 \mathrm{PC}$) SOL.-SOL.+BASE TYPE 2 (2 electrical signals occupied) H2 = 2x3/2 NC-NO SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) I2 $=2 \times 3 / 2$ NO-NC SOL.-SOL. + BASE TYPE 2 (2 electrical signals occupied) T1 = FREE VALVE SPACE PLUG + BASE FOR MONOSTABLE VALVE T2 = FREE VALVE SPACE PLUG + BASE FOR BISTABLE VALVE

